Back to Mathematic

Fermat's Theorem

What is Fermat's Little Theorem?

Fermat's Little Theorem is a fundamental principle in number theory that states if p is prime and a is not divisible by p, then a^(p-1) ≡ 1 (mod p). It's a powerful tool used in cryptography, particularly for primality testing and modular arithmetic calculations.

Key Components:

   1. Prime number p
   2. Integer a (coprime to p)
   3. Modular arithmetic
   4. Power relationship

Two Main Forms:

   1. If gcd(a,p) = 1: a^(p-1) ≡ 1 (mod p)
   2. For any a: a^p ≡ a (mod p)

Examples:

Example 1:
fined 7^2021 mod 13
   • 13 is prime and gcd(7,13) = 1
   • Then 7^12 ≡ 1 (mod 13)

Step 1: Divide 2021 by 12
   • 2021 = 168 × 12 + 5
   • Therefore, 7^2021 = 7^(168×12 + 5)
   • = (7^12)^168 × 7^5

Step 2: Using Fermat's Theorem
   • 7^12 ≡ 1 (mod 13)
   • (7^12)^168 ≡ 1^168 ≡ 1 (mod 13)

Step 3: Calculate 7^5 mod 13
   • 7^1 ≡ 7 (mod 13)
   • 7^2 ≡ 49 ≡ 10 (mod 13)
   • 7^3 ≡ 7 × 10 ≡ 70 ≡ 5 (mod 13)
   • 7^4 ≡ 5 × 7 ≡ 35 ≡ 9 (mod 13)
   • 7^5 ≡ 9 × 7 ≡ 63 ≡ 11 (mod 13)

Final Result:
   • 7^2021 ≡ (7^12)^168 × 7^5 ≡ 1 × 11 ≡ 11 (mod 13)
   • Therefore, 7^2021 ≡ 11 (mod 13)


Example 2:
Let p = 5, a = 2
   • 2^4 = 16 ≡ 1 (mod 5), Process:
   • 2^4 = 16
   • 16 ÷ 5 = 3 remainder 1
   • Therefore, 2^4 ≡ 1 (mod 5)

Example 3:
Let p = 7, a = 3
   • 3^6 = 729 ≡ 1 (mod 7), Process:
   • 3^6 = 729
   • 729 ÷ 7 = 104 remainder 1
   • Therefore, 3^6 ≡ 1 (mod 7)

Video for explanation